
NASA Technical Memorandum 103496

Proximate Composition Of Seed And
Biomass From Soybean Plants Grown At
Different Carbon Dioxide (CO2)
Concentrations

R. M. Wheeler, C. L. Mackowiak, and J. C. Sager
The Bionetics Corp.
Kennedy Space Center, Florida

May 1990

National Aeronautics and

Space Administration

John F. Kennedy Space Center





TABLE OF CONTENTS

SECTION PAGE

TABLE OF CONTENTS ...................................... i

LIST OF TABLES AND FIGURES ............................. ii

ABSTRACT ............................................... iii

INTRODUCTION ........................................... 1

MATERIALS AND METHODS .................................. 2

RESULTS AND DISCUSSION ................................. 5

Proximate Analyses ................................ 6

Protein ...................................... 6

Fat .......................................... 7

Carbohydrate ................................. 8

Crude Fiber .................................. 9

Ash .......................................... i0

Calories ..................................... 10

Applications for Human Life Support ............... 11

LITERATURE CITED ....................................... 13

i



LIST OF TABLES AND FIGURES

TABLE PAGE

1

2

3

4

5

6

7

Dry weight yields ...............................

Proximate analysis of seed ......................

Proximate analysis of seed pods .................

Proximate analysis

Proximate analysis

Proximate analysis

Protein,

of leaves ....................

of stems .....................

of roots .....................

fat, and carbohydrate yield ............

15

16

17

18

19

20

21

FIGURE PAGE

1

2

3

Protein content of soybean plants ...............

Fat content of soybean plants ...................

Carbohydrate content of soybean plants ..........

22

23

24

i±



ABSTRACT

Soybean plants [Glvcine max (L.) Merr. cvs. McCall (MC) and

Pixie (PX)] were grown for 90 days in controlled environment

chambers at 500, i000, 2000, and 5000 ubar (ppm) atmospheric car-

bon dioxide (C02) and compared for proximate nutritional value.

The highest seed and total plant biomass yields were obtained

from cv. McCall plants grown at i000 ubar. For both cultivars,

seed protein levels were highest at i000 ubar (39.3% and 41.9%

for MC and PX) and lowest at 2000 ubar (34.7% and 38.9 % for MC

and PX). Seed fat (oil) levels were highest at 2000 ubar (21.2%

and 20.9% for MC and PX) and lowest at 5000 ubar (13.6% and 16.6%

for MC and PX). Seed carbohydrate levels were highest at 500

ubar (31.5% and 28.4% for MC and PX) and lowest at 2000 ubar

(20.9% and 20.8% for MC and PX). When adjusted for total seed

yield per unit growing area, the highest production of protein

and carbohydrate occurred with cv. McCall at i000 ubar CO2, while

equally high amounts of fat were produced with cv. McCall at i000

and 2000 ubar. Aside from the proportionately higher fat levels

from seed produced at 2000 ubar, no major effects of CO 2 on

proximate composition of soybean seed were observed. This sug-

gests that atmospheric CO 2 concentration can be used in space

life support systems to maximize soybean seed yield with minimal

effect of seed composition.
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INTRODUCTION

In preparation for long-term space habitation by humans,

NASA has begun studies of plant (crop) production in controlled

environments. The plants would provide on-site production of

food, oxygen, and pure water for human life support, thereby

reducing resupply costs. These studies have been conducted under

NASA's Controlled Ecological Life Support Systems, or CELSS

program (MacElroy and Bredt, 1985).

Soybeans are one of several candidate crops recommended for

study for CELSS because of the high protein and oil content of

their seed (Tibbitts and Afford, 1982; Hoff et al., 1982). To

date, CELSS studies with soybeans have focused on the nitrogen

nutrition in hydroponic systems and controlled environments (see

Tolley-Henry and Raper, 1986a, 1986b). In addition to the

mineral nutrition, however, many other factors in the environment

will affect soybean growth, including irradiance, temperature,

humidity, and carbon dioxide (C02) concentration (Thomas and

Raper, 1976; Raper and Thomas, 1978). Because the atmospheric

systems within a CELSS will be tightly closed, knowing the ef-

fects of CO 2 will be particularly important. Numerous CO 2

studies with soybean have been reported, but most of these

studies have focused on whole plant development and yield, with

little emphasis being placed on the nutritional qualilty of the

crop (see Rogers et al., 1984; Jones et al., 1985; Allen et al.,

1988; Baker et al., 1989). In addition, many of these CO 2

studies have been conducted under field settings and only com-

pared the effect of a doubling of the normal ambient concentra-

tion in the atmosphere (350 ubar versus 700 ubar). In sealed
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human life support systems, however, CO 2 could reach levels much

higher than either one or two times Earth-ambient, e.g. up to

6000 ubar in Skylab (Ross, 1973). Preliminary tests conducted

under tight atmospheric closure in NASA's Biomass Production

Chamber (see Prince et al., 1987) have shown that CO 2 levels may

change as much as 1500 ubar each day from the accumulation of

respired CO 2 during a daily dark period (Wheeler et al., 1990).

In this report we present proximate and caloric analysis

data from soybean seed, pod, leaf, stem and root tissue taken

from plants grown at four different CO 2 concentrations. Such in-

formation may prove useful to the overall management of crop

production systems used for human life support in space.

MATERIALS AND METHODS

A series of four 90-day studies was carried out in walk-in

plant growth chambers at the NASA Life Sciences Support Facility

(Hangar L) at Kennedy Space Center. Carbon dioxide (C02) levels

for the four studies were controlled to near 500, I000, 2000 and

5000 ubar (ppm) (assuming 1.013 bar total atmospheric pressure),

with final averages equally 506, 979, 1984, and 4986 ubar ± ap-

proximately 8% (CV) of the set point. A "low" treatment of 500

was selected instead of the normal ambient (340-350) to avoid

periodic increases resulting from human activity around the cham-

bers during the workday. For all treatments, CO 2 enrichment was

provided by continuously adding a small amount of pure CO 2 to the

chamber to maintain a set point. Chamber CO 2 levels were

monitored with an infrared gas analyzer (ANARAD Inc., Santa Bar-

bara, CA) and controlled with a dedicated computer system.
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Calibrations and updates of the computer conversions of analyzer

signals were performed automatically each day using a zero-gas

(nitrogen) and span-gas near the working range for the particular

CO 2 treatment.

Irradiance within the chambers was provided with 30 96-inch

VHO Vita-Lite fluorescent lamps (Duro-Test Inc, North Bergen, NJ)

separated from the growing area by a clear acrylic barrier.

Photosynthetic photon flux (PPF) levels for all the tests

averaged 294 umol m -2 s-I ± 38 umol m -2 s-I (s.d. between in-

dividual tests) using a 12-h light/12-h dark photoperiod. Tem-

peratures for all the tests averaged 25.7°C ± 0.3°C in the light

and 20.0°C + 0.2°C in the dark. Relative humidities were held

constant during the light and dark and averaged 63% _ 3%.

Soybean [Glvcine max (L.) Merr. cvs McCall and Pixie] seeds

were soaked in deionized water for 24 h prior to planting to

hydronponic growing trays as described by Mackowiak et al.

(1989). Eight trays, four of each cultivar, were placed in the

chamber for each 90-day study. At about 12 days after planting

(DAP), plants were thinned to either three or six plants per

tray. At about 30 DAP, each tray was enclosed with a 60-cm high

white, vinyl-coated fencing (5 cm x 6.2 cm holes) to confine

shoot growth to the 0.25 m 2 area.

A complete nutrient solution using only nitrate-nitrogen was

recirculated continuously from a common reservoir to each of the

trays (Mackowiak et al., 1989). Solution pH was controlled

automatically to 5.8 using dilute (0.39 M) nitric acid. Water

was manually added to the reservoir each day to maintain a con-

stant volume, and solution nutrients were replenished twice each



week to maintain solution electrical conductivity. Solution

nutrient levels were monitored weekly using an atomic absorption

or ICP spectroscopic techniques.

At 90 DAP all plants were harvested, seeds were removed from

the pods, and all materials were oven-dried for a least 48 h at

70°C to determine dry weights. Following weighing, plant

materials were separated by cultivar and plant part, i.e., seeds,

pods, leaves, stems, and roots and ground through a 2-mm mesh

(Thomas-Wiley mill #4). The ground tissue samples (approximately

i00 g each) were sealed in plastic bags and shipped for total

proximate nutritional analysis (Nutrition International Inc.,

East Brunswick, NJ). Proximate analyses followed standard AOAC

procedures (1984). Analyses included the following: moisture by

vacuum oven (AOAC paragraph 7.003); ash by muffle furnace (AOAC

paragraph 7.009), protein by Kjeldahl nitrogen (AOAC paragraphs

2.056-2.058); fiber by digestion and gravimetric technique (AOAC

paragraphs 7.061-7.065); fat by ether extraction or acid

hydrolysis (AOAC paragraphs 7.055-7.060); and carbohydrate by

difference. Dietary energy equivalents were calculated by as-

signing 4 kcal per g carbohydrate, 4 kcal per g protein, and 9

kcal per g fat. Total energy values were determined by bomb

calorimetry. All data presented have been normalized for zero

moisture content.

Because most of the available tissue was required for the

complete set of analyses, no replicate samples could be taken and

no statistic comparisons between treatments were made. Although

apparent differences are discussed below, the reader is cautioned

that these differences are not necessarily statistically signifi-



cant. On one occasion, sufficient seed tissue was available from

a previous treatment and was analyzed along with another

treatment's samples. Results showed that protein levels were

within 1% of the previous sample, carbohydrate within 7%, and fat

levels within about 15%. The discrepancies could have been

caused by several factors, including analysis repeatability, dif-

ferences in sample homogeneity, or changes in composition of the

samples over time.

RESULTS AND DISCUSSION

Yield data (expressed as grams dry weight per unit area)

for the four trays of each cultivar at the different CO 2 levels

are shown in Table I. The highest yield of seeds for cv. McCall

plants occurred at I000 ubar, while the highest yield for cv.

Pixie occurred at 500 ubar. The lowest seed yield for both cul-

tivars occurred at 2000 ubar. Regardless of CO 2 level, McCall

plants always produced more seed than Pixie. With the exception

of cv. Pixie at 5000 ubar, harvest index (ratio of seed to total

biomass) decreased with increasing CO 2 (Table I).

The increase in seed yield and total growth by increasing

the CO 2 from 500 to i000 ubar is not surprising for a C 3 species

as soybean, where CO 2 enrichment typically results in increased

photosynthetic rates and increased total plant growth (Acock and

Allen, 1985). The slight decrease in yield as CO 2 was increased

above I000 ubar suggests that the higher levels (i.e., 2000 and

5000 ubar) were supraoptimal, but not particularly toxic or in-

jurious to the plants (Kramer, 1981).



PEQximate Analyses

Proximate analysis data are presented according to the dif-

ferent parts of the plant in Tables 2 - 6. The same data are

shown again in Figs. 1 - 3, but broken out by protein, fat, and

carbohydrate for ease of comparison. It is important to note

that the most of the leaves, stems, and pods were senescent by 90

days and thus will likely differ significantly from healthy, ac-

tively growing tissue. However, for the purpose of CELSS, these

analyses should provide an indication of what constituents can be

recovered from inedible plant structures when soybeans are grown

to a mature stage for seed production.

Protein. Because protein levels were determined from

elemental nitrogen concentration (N x 6.25), any residual nitrate

in tissues (e.g. leaves) or clinging to the surface (e.g. roots)

would subsequently be interpreted as protein and could have in-

troduced some error (Krober and Gibbons, 1962; Pace et al.,

1982). This may be particularly important with plants grown in

hydroponic culture with high nutrient availability. However,

with the exception of some leafy vegetables, e.g. lettuce and

spinach, leaf nitrate levels of most plants are commonly assumed

to be low (C.A. Mitchell, personal communication). In addition,

Krober and Gibbons (1962) have shown that protein accounts for

95% to 96% of the total protein in mature soybean seed.

Seeds from the various treatments ranged from about 35 to

42% protein, with the highest levels occurring at 1000 ubar CO 2

and the lowest at 2000 ubar for both cultivars (Table 2 and Fig.

1). Seed from cv. Pixie plants consistently had higher protein

levels (39% to 42%) than seed from cv. McCall (35% to 39%).
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Regardless of the CO 2 concentration, seed protein levels from

these studies conducted in controlled environments were higher

than typical values reported for field-grown seed (33% to 34%;

Duke and Atchley, 1986).

Protein levels of pods from both cultivars were low (3% to

5%) and tended to increase as CO 2 was increased (Table 3 and Fig.

i). Leaf protein levels ranged from 11% to 21% and were dis-

tinctly highest at the 5000 ubar concentration (Table 4 and Fig.

i). Stem protein levels ranged from 7% to 23% and in contrast to

leaves were highest at I000 ubar and lowest at 5000 ubar (Table 5

and Fig. i). Other than seed, roots showed the highest protein

levels, ranging from 20% to 25% for both cultivars (Table 6 and

Fig. I), but no consistent trends were apparent regarding root

protein and CO 2 concentration.

Fat. Seed fat levels ranged from about 14% to 21%, with the

highest levels clearly occurring at 2000 ubar CO 2 (Table 2 and

Fig. 2). With exception of the I000 ubar treatment, Pixie seeds

tended to have slightly higher fat levels than cv. McCall. The

fat levels of the seed from these tests ranged from 16% to 21%

and were slightly greater than fat levels reported for field-

grown seed (15% to 18%; Duke and Atchley, 1986).

The high fat content of the 2000 ubar seed seems anomalous

in comparison to the other treatments. For the sake of ex-

perimental uniformity, all plants in these studies were harvested

at 90 days after planting, but plants grown at 2000 ubar CO 2 had

a greater proportion of green and immature pods at this stage

than the other treatments. Although fat (oil) and protein can

accumulate at similar rates during seed development (Yazdi-Samadi
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et al., 1977), generally fat accumulation is relatively early in

soybean seed development, while protein accumulation is rela-

tively late (Wilson, 1987). Thus the proportionately high fat

and low protein of the 2000 ubar seed may be a result of a

greater quantity of immature pods and seeds at harvest, rather

than a true CO 2 concentration effect.

Fat levels in other plant parts were very low (typically

below 4%), and tended to decrease with increased CO 2 concentra-

tion (Tables 3-6 and Fig. 2).

Carbohydrate. Seed carbohydrate levels ranged from 21% to

31% and tended to decrease as CO 2 was increased (Table 2). The

highest seed carbohydrate levels occurred at 500 ubar CO 2 and

lowest at 2000 ubar (Table 2 and Fig. 3). McCall seeds consis-

tently showed higher carbohydrate level than Pixie seeds (27% to

31% vs 21% to 28%). Carbohydrate levels for both cultivars were

lower than levels for typical field-grown seed (34% to 35%; Duke

and Atchley, 1986).

Carbohydrate levels in seed pods ranged from 42% to 60% with

the highest concentration occurring at 2000 ubar and the lowest

at 5000 ubar (Table 3 and Fig. 3). The high carbohydrate levels

at 2000 also may be related to the delay in seed and pod maturity

of the plants in this treatment. Leaf carbohydrate levels ranged

from approximately 39% to 59%, with the highest level for both

cultivars occurring at i000 ubar and the lowest at 5000 ubar

(Table 4 and Fig. 3). Carbohydrate in stems ranged from ap-

proximately 29% to 46% and tended to decrease in response to in-
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creased CO 2 (Table 5 and Fig. 3). Root carbohydrate levels

ranged from approximatley 26% to 38% and showed no clear trends

in response to CO 2 concentration (Table 6 and Fig. 3).

In all the assays, it is important to note that carbohydrate

levels were determined by a difference method; hence it is pos-

sible that levels may be slightly overestimated if some cellulose

or other insoluble, structural compounds were partially broken

down and not reported as a portion of crude fiber. This is sup-

ported by evidence from other studies which have shown that

specific carbohydrates in soybean seed (i.e., starch, raffinose,

stachyose, and sucrose) have totaled only 10-15% of the seed dry

weight (Yazdi-Samadi et al., 1977; Brown and Huber, 1987) com-

pared to 30-35% reported from analyses using standard proximate

procedures (Duke and Atchley, 1986).

_rude fiber. Seed crude fiber levels were lowest for both

cultivars at i000 ubar CO 2 (approximately 6%) and increased to

approximately 13% for cv. Pixie at 2000 ubar and 12% for cv.

McCall at 5000 ubar (Table 2). Except for seed from 1000 ubar

CO2, crude fiber levels were higher than levels reported for

field-grown seed (4% to 6%; Duke and Atchley, 1986).

Pod crude fiber levels were typically near 30% with the ex-

ception of cv. Pixie at 2000 ubar, which dropped to 19.5% (Table

3). This low crude fiber level for 2000-Pixie occurred in con-

junction with high a carbohydrate level, which again may be re-

lated to the immature stage of pods at harvest. With the excep-

tion of cv. Pixie at I000 ubar, leaf crude fiber levels increased

with increased C02, with both cultivars ranging from ap-

proximately 10% to 15% (Table 4). Stem crude fiber levels also
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showed a distinctive increase in response to increased CO2, with

cv. McCall increasing from approximately 44% to 56% and cv. Pixie

from 26% to 47% (Table 5). Crude fiber levels of cv. McCall

roots tended to increase with increased CO 2 (31% to 41%) but cv.

Pixie roots showed no clear trend in response to CO 2 and ranged

from approximately 27% to 35% (Table 6).

Ash. Ash levels from seed were highest at 1000 ubar and

lowest at 2000 ubar and ranged from approximately 6% to 8% for

both cultivars over all CO 2 treatments. This is higher than the

4% to 6% levels of ash reported for field-grown seed (Duke and

Atchley, 1986). Pod ash levels also were lowest at 2000 ubar but

highest at 5000 ubar and ranged from approximately 13% to 19% for

both cultivars over all the treatments (Table 3). Leaf ash

levels were highest at 5000 ubar and lowest at i000 ubar and

ranged from approximately 16% to 23% for both cultivars over all

treatments (Table 4). Stem ash levels were highest at 500 ubar

and lowest at 2000 ubar and ranged from approximately 6% to 11%

for both cultivars over all treatments (Table 5). Root ash

levels were highest for both cultivars at 1000 ubar

(approximately 15%) and lowest for cv. McCall at 5000 ubar (10%)

and lowest for cv. Pixie at 2000 ubar (12%) (Table 6).

Calories. Of all the plant components, seeds showed the

highest calorie (energy) values, both in terms of calculated

dietary energy and from bomb calorimeter measurements (Tables 2-

6). This is likely a result of the much higher fat content of

the seeds in comparison to other plant parts. Estimates of

dietary calorie content of leaves, stems, and roots tended to
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decrease with increasing CO 2, while bomb calorimeter measurements

of total energy content showed no clear trends regarding CO 2 con-

centration.

ADDlications for Human Life SuDport

Seed represented over 45% of the total biomass in several

treatments in this study (Table I), and clearly the main reason

for growing soybeans in a life support system would be for seed

production (Tibbitts and Alford, 1982; Hoff et al., 1982). By

combining the yield data from Table i and the composition of the

seed from the different environments (Table 2), it is apparent

that the best yield for total seed protein and carbohydrate per

unit area was obtained from cv. McCall plants grown at i000 ubar

CO 2 (Table 7). Total fat (oil) production from seeds was equally

high from McCall plants grown at 1000 or 2000 ubar CO 2 (Table 7).

Thus the changes in total seed yield resulting from CO 2 con-

centration outweighed any potential advantages from changes in

seed composition associated with CO 2 concentration. This sug-

gests that soybean crops used for space life support should be

managed foremost to maximize seed yield, which in turn should

maximize returns of protein, fat, and carbohydrate.

The "vegetative" response with lower seed set (i.e. low har-

vest index) at 2000 and 5000 ubar suggests that very high CO 2

concentrations may be unfavorable for maximum seed yield from

soybeans in a life support farm. Despite the importance of seed

production, if food can be recovered effectively from inedible

plant parts, the high total biomass yield from the high CO 2 con-

centrations may be important. Analyses of young soybean leaves

have shown that CO 2 enrichment can double starch levels (Hrubec

II



et al., 1985; Allen et al., 1988), thus there may be potential

for recovering useful carbohydrate from the inedible parts. In

addition, structural carbohydrates in leaves and stems could be

broken down enzymatically to yield simple sugars (Wilke et al.,

1983), or the inedible biomass might be used to culture edible

organisms such as _ ostreatus (oyster mushroom) (Calzada

et al., 1987). In either case, the effective harvest index

(i.e., percent edible yield) would be increased beyond the seed

harvest alone.

Although certain trends were apparent with regard to CO 2

effects on tissue composition, a strong case can be made for the

absence of any major changes. Aside from higher seed fat levels

at 2000 ubar (Table 2, Fig. 2), the results indicate that varying

CO 2 concentrations between 500 and 5000 ubar should not have any

major influence on seed composition. This may be an important

characteristic for crops used in tightly closed systems (e.g. a

CELSS), where CO 2 concentrations may vary depending on the ratio

of humans to plants, capacity of system gas reservoirs, or even

diurnal light/dark cycles. The apparent resilience of soybeans

with regard to total plant growth and seed composition over a

wide range of CO 2 concentrations may be an important considera-

tion for their inclusion in a CELSS.
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Table i. Dry weight yield of soybean plants grown under at four

CO 2 concentrations.

CO 2 Cultivar

Seed Dry Total Plant I H arvest2

Weight Dry Weight Index

(ubar) (g m-2) (g m-2) (%)

500 McCall 621 1336 46

Pixie 282 705 40

I000 McCall 766 1701 45

Pixie 267 787 34

200O McCall 593 1480 40

Pixie 231 756 31

5OOO McCall 613 1568 39

Pixie 269 737 36

i Includes: leaves, stems, roots, seeds, and pods.

2 Harvest index s seed DW / total plant DW.
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Table 2. Proximate analysis of seed from soybean plants grown at

four CO 2 concentrations. Data are expressed as a percent of to-

tal dry weight.

CO 2 cv Protein Fat Carbo- Crude Ash Calories I Bomb

hydrate Fiber Cal.

(ubar) (%) (%) (%) (%) (%) (kcal/g) (kcal/g)

500 McCall 37.7 16.1 31.5 7.7 6.9 4.2 5.4

Pixie 38.9 17.3 28.4 8.6 6.7 4.3 5.5

i000 McCall 39.3 16.5 30.4 5.9 7.1 4.3 5.5

Pixie 41.9 16.8 27.1 5.7 8.1 4.3 5.5

2000 McCall 34.7 21.2 26.9 10.7 6.3 4.4 5.3

Pixie 38.9 20.9 20.8 13.1 6.1 4.3 5.4

5000 McCall 38.1 13.6 29.0 12.0 6.8 3.9 5.4

Pixie 40.0 16.6 23.8 12.0 7.1 4.0 5.5

1 Calculated by assuming 4 kcal g-I carbohydrate, 4 kcal g-i pro-

tein, and 9 kcal g-I fat.
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Table 3. Proximate analysis of seed pods from soybean plants

grown at four CO 2 concentrations. Data are expressed as a per-

cent of total dry weight.

CO 2 cv Protein Fat Carbo- Crude Ash Calories I Bomb

hydrate Fiber Cal.

(ubar) (%) (%) (%) (%) (%) (kcal/g)(kcal/g)

500 McCall 3.6 2.2 46.1 32.8 14.7 2.2 3.7

Pixie 4.7 1.8 48.3 29.6 15.4 2.3 3.6

I000 McCall 3.3 0.8 45.6 33.9 15.8 2.0 3.6

Pixie 4.7 0.6 45.0 32.7 16.3 2.0 3.5

2000 McCall 3.9 1.2 50.1 31.3 13.2 2.3 3.5

Pixie 5.1 0.7 60.2 19.5 14.2 2.7 3.5

5000 McCall 4.8 0.6 42.9 33.6 17.3 2.0 3.7

Pixie 5.1 0.6 42.0 32.1 19.0 1.9 3.6

b_Qmmmm_

1 Calculated by assuming 4 kcal g-i

tein, and 9 kcal g-1 fat.

carbohydrate, 4 kcal g-i pro-
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Table 4. Proximate analysis of leaves from soybean plants grown

at four CO 2 concentrations. Data are expressed as a percent of

total dry weight.

CO 2 cv Protein Fat Carbo- Crude Ash Calories I Bomb

hydrate Fiber Cal.

(ubar) (%) (%) (%) (%) (%) (kcal/g) (kcal/g)

500 McCall 12.7 4.3 51.4 11.2 19.9 3.0 3.5

Pixie 13.2 3.9 51.8 12.1 18.4 3.2 3.7

i000 McCall 11.2 3.0 54.8 12.2 18.3 2.9 3.6

Pixie 12.0 2.5 58.8 9.9 16.4 3.1 3.7

2000 McCall 13.3 2.8 49.9 14.2 19.4 2.8 3.4

Pixie 15.5 2.5 51.3 13.1 17.1 2.9 3.6

5000 McCall 18.8 2.1 40.1 15.3 22.6 2.6 3.6

Pixie 21.1 1.8 38.8 15.0 22.4 2.6 3.7

.- w

1 Calculated by assuming 4 kcal g-I carbohydrate, 4 kcal g-i pro-

tein, and 9 kcal g-I fat.

18



Table 5. Proximate analysis of stems from soybean plants grown at

four CO 2 concentrations. Data are expressed as a percent of total

dry weight.

CO 2 cv Protein Fat Carbo- Crude Ash Calories I Bomb

hydrate Fiber Cal.

(ubar) (%) (%) (%) (%) (%) (kcal/g) (kcal/g)

500 McCall 9.8 2.2 36.3 43.6 7.7 2.1 4.1

Pixie 13.3 2.4 46.2 26.4 11.3 2.6 3.9

I000 McCall 13.3 1.4 30.3 47.0 7.5 1.9 4.1

Pixie 22.7 1.0 36.6 31.4 8.1 2.5 3.9

2000 McCall 11.7 0.9 30.6 50.3 6.1 1.8 4.0

Pixie 18.5 1.0 36.0 36.4 7.8 2.3 3.9

5000 McCall 7.4 0.7 28.9 55.6 6.7 1.5 4.4

Pixie 8.8 0.7 31.8 47.5 10.7 1.7 4.2

1 Calculated by assuming 4 kcal g-I carbohydrate, 4 kcal g-I pro-

tein, and 9 kcal g-i fat.
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Table 6. Proximate analysis of roots from soybeans grown at four

CO 2 concentrations. Data are expressed as a percent of total dry

weight.

CO 2 cv Protein Fat Carbo- Crude Ash Calories I Bomb

hydrat Fiber Cal.

(ubar) (%) (%) (%) (%) (%) (kcal/g) (kcal)

500 McCall 20.9 3.7 29.1 31.2 14.7 2.3 3.8

Pixie 20.8 2.6 32.8 29.9 13.6 2.4 3.8

1000 McCall 21.9 1.7 27.9 33.3 14.8 2.2 3.9

Pixie 25.3 1.6 30.3 26.7 15.2 2.4 3.9

2000 McCall 23.2 1.5 31.0 33.3 10.6 2.3 3.8

Pixie 22.0 1.2 38.0 26.7 11.7 2.5 3.7

5000 McCall 20.4 1.6 26.2 40.7 9.9 2.0 4.0

Pixie 23.2 1.0 27.2 35.0 12.3 2.1 4.1

1 Calculated by assuming 4 kcal g-1 carbohydrate,

tein, and 9 kcal g-I fat.

4 kcal g-i pro-
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Table 7. Protein, fat, and carbohydrate yields per unit area

from soybean seed grown at four different CO 2 concentrations.

CO 2 Cultivar Total Protein Total Fat

Yield Yield

Total Carbo-

hydrate Yield

(ubar) (g m -2) (g m -2) (g m -2)

5OO McCall 234 i00 196

Pixie ii0 49 80

I000 McCall 301 126 233

Pixie 112 45 72

2OOO McCall 206 126 159

Pixie 90 48 48

5000 McCall 234 84 178

Pixie 108 45 64
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